
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Invited Lecture. Fluctuation absorption of sound in smectics
E. B. Gurovicha; E. I. Katsa; V. V. Lebedeva

a L.D. Landau Institute for Theoretical Physics, U. S. S. R. Academy of Sciences, Moscow, U.S.S.R.

To cite this Article Gurovich, E. B. , Kats, E. I. and Lebedev, V. V.(1989) 'Invited Lecture. Fluctuation absorption of sound
in smectics', Liquid Crystals, 5: 1, 367 — 376
To link to this Article: DOI: 10.1080/02678298908026378
URL: http://dx.doi.org/10.1080/02678298908026378

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678298908026378
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1989, VOL. 5, NO. 1, 367-376 

Invited Lecture 
Fluctuation absorption of sound in smectics 

by E. B. GUROVICH, E. I. KATS and V. V. LEBEDEV 
L.D. Landau Institute for Theoretical Physics, U.S.S.R. Academy of Sciences, 

ul. Kosygina 2, 117940 GSP-1 Moscow, U.S.S.R. 

A comparison is made of the low-frequency dynamics of smectics A and 
smectics C. It is shown that in both cases fluctuations of smectic layer displace- 
ments bring about contributions to the bulk viscosity coefficients (diverging as w-') 
and consequently lead to anomalous sound attenuation. However, the coefficients 
of these fluctuation contributions differ greatly between smectics A and smectics C. 
The reason for this is a strong coupling of the orientational mode in smectics C to 
layer displacements (the so-called undulation mode). The results of this work make 
it possible to give a complete interpretation of the experimental data on sound 
absorption in smectics. 

1. Introduction 
Smectics are liquid-crystalline phases with one dimensional density modulation. 

As was shown by Landau and Peierls [I] in the nineteen thirties, long wavelength 
fluctuations destroy genuine long range order. Nevertheless, elasticity of smectic 
layers is a properly defined quantity. As has been demonstrated by Grinstein and 
Pelcovits and one of the authors (E.K.) [2, 31, the respective elasticity moduli are only 
weakly (logarithmically) scale dependent. 

More explicitly, long wavelength fluctuations of smectic layers manifest them- 
selves in the dynamics of smectics. As was first shown by Mazenko, Ramaswamy and 
Toner [4], fluctuations lead to corrections, diverging as 0-', to the so-called smectic 
bulk viscosity coefficients. This gives rise to an anomalous dependence of the atten- 
uation of both first and second sound. A consistent theory of dynamic fluctuation 
effects in smectics, taking into account logarithmic renonnalizations of the parameters, 
has been constructed by two of the authors (E.K. and V.L.) [5 ] .  

Strictly speaking, these works concern the smectic A phase. Therefore the 
problem remains of the peculiarities of the anomalous attenuation of sound in 
the smectic B and C phases, where there is an additional orientational mode (com- 
pared with the SA phase). This problem for the SB phase has been investigated 
in [6], where the authors came to the conclusion that the expressions describing 
the anomalous attenuation of sound in the SB and SA phases practically coincide. 
However, the corresponding problem for the Sc phase requires a more detailed 
analysis. 

In the study of the spectrum of smectics B it has been assumed that coupling of 
the orientational mode and smectic layer displacements (the undulation mode) is 
weak. This coupling no doubt is missing in the SB phase. However, the analysis of the 
critical dynamics of the smectic A-smectic C transition performed by us in [7] shows 
that, despite the fact that the tilt of the director with respect to the layers of the Sc 
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368 E. B. Gurovich et al. 

phase is small, the coupling of the orientational and undulation modes in the Sc phase 
is not at all weak. 

Collin et al. [8] have observed anomalous attenuation of sound in the Sc phase. 
It is important that they had previously observed anomalous attenuation of sound in 
the SA phase of the same substance [9], which allows comparison of the character of 
the attenuation in the SA and Sc phases. This prompted us to perform a consistent 
calculation of the anomalous attenuation in the Sc phase. 

2. The smectic phases 
The layered structure of smectics is conveniently described by the density- 

modulation phase. We shall denote this variable by W. By virtue of the definition of 
W, the condition W(t, r) = constant fixes the position in space and evolution in time 
of a certain smectic layer. Correspondingly, the vector V W fixes the direction of the 
normal to the layer, and 

I = VW/lVWl (1) 

is a unit vector along this direction. 
The anisotropy of a liquid crystal is characterized by the director n, pointing to 

the preferred direction of the long axes of molecules. In smectics A the director is 
perpendicular to the layer, i.e. it coincides with the vector I. In smectics C the director 
is tilted by a certain angle to the normal; therefore the vector 

# = n x l  (2) 
is non-zero. The magnitude of the vector # determines the tilt angle of the director, 
and the unit vector 

n, = #/1#1 (3) 
fixes a preferred direction in the plane of the smectic layer. 

In the S ,  phase the magnitude 1 # 1  is fixed, whereas the direction of the vector n, 
is not. Thus the macroscopic state of smectics C should be characterized by an extra 
variable (compared with the SA phase), describing the direction of n, . This is accounted 
for by spontaneous breaking of the rotational symmetry of a layer in smectics C. 

By virtue of the conditions ln,I2 = 1 and n, - I = 0, the vector n, has only one 
degree of freedom, which we shall term orientational. This degree of freedom can be 
conveniently described by means of the angle rp, whose variation is determined by 

6rp = 2(n, x I).6n,. (4) 
Apart from the variables Wand rp, a complete set of long wavelength variables of 

smectics C also involves the momentum density j, the mass density Q and the specific 
entropy 0. Thus the energy of the Sc phase can be written as 

s = [d3r  [g + E(e, (r, V W ,  V~V, W, n,, vQ) . 1 ( 5 )  

The energy density E depends only on derivatives of W (since W is defined up to a 
constant) and the gradient of n, is expressed in terms of the gradients of rp and W. 
The pressure P is expressed in terms of the energy density as 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Invited Lecture: Sound absorption in smectics 369 

In the present approximation the energy density E is represented as 

E = &(e, 17) + E ,  + E,. (7) 

E ,  = $B(q;2(VW)2 - 1)2 + fKqr2(V2W)’.  (8) 

The smectic part of the energy is 

Here B is the modulus of compressibilities of the smectic layer, K is the elasticity 
coefficient, which is of the order of magnitude of the Frank modulus, and qs is the 
wavevector, determining the density modulation period (this period is equal to 
27cq; I ) .  The orientational energy is written as 

Eq = 3[als$ + (a2 - al)nlinlk + a31ilklViqVkq, (9) 
where S$ = 6 ,  - I , & .  

The energy minimum (8) is achieved by the solution W = qsz, describing a system 
of equidistant smectic layers, orthogonal to the z axis. To describe deviations of 
smectic layers from this position, one should put W = qs(z - u), where u is the 
magnitude of the layer displacement vector along the z axis. Expanding the energy (8) 
in u, to second order we get the standard expression 

Eg) = +B(Vzu)2 + fK(V2u)2. (10) 

3. Dynamics of smectics C 
We can now turn to the derivation of the equations for the long wavelength 

dynamics of smectics C. We shall largely follow [6, lo], but we shall retain a number 
of terms that were neglected there. The general form of the hydrodynamic equations 
is 

- -  ah - {a?, 4J - 
at  

Here cja are a complete set of long wavelength variables, and a summation performed 
over the subscript b.  {a?, d a )  is the Poisson bracket with the hamiltonian (5).  The 
differential operator r u b  in (1 1) is determined by a set of kinetic coefficients (of 
viscosity, thermal conductivity and permeability [ 5 ,  61). ha is a molecular field con- 
jugate to 4a: 

For the orientational variable q, for instance, the explicit form of the equation of 
motion following from (1 1) is 

where v is the velocity, r is the kinetic coefficient (r-’ has dimensions of viscosity and 
is analogous to the torsional viscosity of nematics), and 

Rik = Elkill  + Al(nlilk + nlkli) + & [ n ~ i  - (I x n 1 ) k  -k nlk * (I  x n ~ ) i ] .  (14) 
Here &/ki is the totally antisymmetric tensor, and AI  and 1, are phenomenological 
parameters, describing the dynamic coupling of the orientational and undulation 
modes, mentioned in $1. 
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370 E. B. Gurovich et al. 

We also give here an explicit form for the viscosity tensor qik lm (in the notation of 
[lOl): 

qikim = q l l i l k l l l m  + q2(6$6km + + q3(l i1ia& + lklla,', + 1i1m6h + l k 1 m 6 ; )  

+ ( 1 4  - q*)d;Lkblf;? + 2qs(aiklilk + ltlrnak)* (1 5 )  

Generally speaking, by virtue of the biaxiality of smectics C, the structure of the 
viscosity tensor in this phase is somewhat more complicated. However, owing to the 
small value of the tilt angle of the director to the normal I, we shall confine ourselves 
to the uniaxial expression (1 5).  

4. Critical behaviour of Sc near TscsA 
In this section we shall give a brief description of the behaviour of the parameters 

of the smectic C phase near Tscs,, i.e. the temperature of the transition into the S, 
phase. A detailed analysis of this problem can be found in [7, 111, which are devoted 
to a theoretical study of the Sc-S,  transition. Note that the conclusions arrived at in 
this investigation with regard to the Sc phase are to a considerable extent general, the 
point being that, owing to the small value of the tilt angle of the director in real 
smectics C, they can always be treated as being close to smectics A. 

The order parameter describing the smectic C-smectic A transition is the vector 
@ introduced in equation (2). The mean value of (@) is zero in the SA phase and 
non-zero in the Sc phase. By virtue of its definition, (@) fixes an average tilt of the 
director n with respect to the normal to the smectic layer. It is straightforward to see 
that in the expansion of the free energy there are only even terms in @. Therefore the 
smectic C-smectic A transition is second order. 

Because of the condition I @ = 0, the order parameter @ has two independent 
components. However, the critical behaviour of a smectic at the SA-S, transition is 
not described by the standard l@I4 model with two components. The order parameter 
@ lies in a real but anisotropic space and is therefore coupled with vector quantities. 
This leads to a considerable critical dependence of the anisotropy of a smectic layer 
in the S, phase. This manifests itself in pecularities of the critical dynamics of the 
transition [7]. 

Non-universality of the behaviour of the characteristics of a smectic at the Sc-SA 
transition is evident in both the mean field theory and over a fairly broad region of 
strong critical fluctuations, where one can neglect corrections to the gradient term in 
the expansion of the free energy. In this region the critical behaviour of the parameters 
is described by non-universal indices, which are functions of / R ~ .  The universal 
behaviour, associated with the [@I4 model with two component order parameter, can 
occur only in a very narrow region near T,,,,, where corrections to the gradient terms 
become important. The region of universal behaviour cannot apparently be reached 
experimentally; therefore we shall not dwell upon it. Thus henceforth the strong- 
fluctuation region implies the region of non-universal critical behaviour. 

cc Tscs, - T. In the region of strong 
fluctuations 

In the mean field theory in the S, phase 

K@>l cc IT,,,, - TIS. (16) 
The exponent of the order parameter is /? = 0-31-0.5. Above in (8) the smectic wave 
vector q1 has been introduced. The critical correction to it is determined by the law 

A41 cc ( 1 @ 1 2 > .  (17) 
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Invited Lecture: Sound absorption in smectics 37 1 

Accordingly, in the mean field theory Aqs a Tscs, - T, and in the region of strong 
fluctuations Aq, cc IT,,,, - TIZB. 

In the mean field theory quantities such as the heat capacity and compressibility 
of smectics experience an abrupt increase at the point of transition to the S, phase. 
The smectic modulus B is particularly sensitive to the transition, decreasing by an 
amount of the same order of magnitude. In the strong fluctuation region there are 
critical contributions 

(18) AC, AB-'  cc ITs,s, - TI-" 

to the heat capacity C and compressibility B-I. These singularities are observed in 
both the S, and Sc phases, but with different coefficients of ITscs, - TI-". The 
heat-capacity index in (18) is small (a ,< 0.1); therefore it is difficult to observe this 
singularity experimentally. 

Corrections to the modulus K that appears in the smectic energy are absent in 
mean field theory and are negligibly small in the strong fluctuation region. The 
moduli u I ,  a2 and a3 appearing in the orientational energy (9) are given by 

where K , ,  K2 and K3 are the Frank constants, determining the energy of inhomo- 
geneity of the director. The values of the moduli K, , K2 and K3 can be approximated 
by the value of the modulus K; we therefore arrive to an estimate 

which determines the critical behaviour of the moduli M,, a2 and a3. 
The critical behaviour of the viscosity coefficients is quite different. The critical 

singularities in the coefficients determining the law of relaxation of the transverse 
velocity are absent, the viscosity coefficients q I  , q4 and q5 that determine the atten- 
uation of first and second sound have strong critical behaviours. In mean field theory 
in the Sc phase (but not in the SA phase) there are the following corrections to these 
coefficients: 

&I = tK(4u2, 012 = f K 2 W 2 ,  a3 = aK3($>2, (19) 

a19 a3 = K($>2,  

AVI, b 4 ,  4 s  CC ITS,,, - TI-'. 

4 1 ,  AV4, A?, CC ITS,,, - TI-"-"' 

In the strong-fluctuation region 

(20) 
Here z is a critical dynamic index, which is close to 2, and v is the correlation length 
index. In mean field theory v = 0.5, in the strong fluctuation region v = 0.62-0.64. 
The fluctuational divergence (20) is observed in both the SA and Sc phases [l 11 (but 
with different coefficients of ITscs, - TI-"-". 

The critical behaviour of the kinetic coefficient appearing in (13) for the angle q 
is determined as 

= 4 ( ~ ~ ( + ) ~ ) - ' ,  (21) 
where y1 is the torsional viscosity coefficient, for which there is an estimate y ,  x q2,  
q3.  Note that (21) is in good agreement with the well-established but still rather 
surprising experimental observation that the time of orientational relaxation in 
smectics C and C* is determined by an effective viscosity that is an order 
of magnitude smaller than that in smectics A. For the reactive phenomenological 
parameters 1, and ,I2 in (14) one can obtain expressions [7] 

A2 = 1. A t 1  I ,  = - 
I(rlr>l ' 
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312 E. B. Gurovich et al. 

Here I is a nematic reactive parameter close to unity for substances that consist of 
rod-like molecules. We should stress that the quantities yI  and I have no critical 
singularities. 

The estimates given here are valid for the low frequency (hydrodynamic) region. 
If the characteristic frequency o exceeds the inverse time of order parameter relax- 
ation then the critical corrections to the parameters studied by us acquire considerable 
frequency dependences. We shall not give the respective estimates here but shall note 
only that the frequency dependence suppresses both the mean field and Auctuational 
contributions. 

5. The low frequency mode 
The presence of the orientational degree of freedom in smectics C gives rise to an 

extra low frequency mode (compared with the SA-phase). This mode has a diffusive 
character and is analogous to the director mode. As in nematics, this mode is slow, 
which is accounted for by a small value of the parameter 

Kd1’ @ 1, 

where e is the density, K is a quantity of the order of magnitude of the Frank modulus, 
and r]  is the characteristic viscosity. 

In smectics second sound also propagates. For propagation angles close to 0” or 
90” with respect to the smectic layers, this acoustic mode splits into two diffusional 
modes. One is fast and is associated with shear velocity relaxation. The other is slow 
and is associated with relaxation of smectic layer displacements. It is with this 
(undulation) mode that fluctuational effects in smectics are associated. 

The explicit form of the system of equations from which one can obtain the 
dispersion law for the orientational and undulation modes can be found from (1 1) by 
means of simple but rather cumbersome calculations. Details can be found in 
[5, 61, and we shall give only the results here, taking into consideration the fact that, 
as follows from (22), I ,  % I z  x 1. In the region of wavevectors qz 4 q 3 q : / ( B ~ ) 1 1 2  
that is important for us, the system of equations obtained describes two branches of 
the spectrum, corresponding to the smectic and orientational modes. The dispersion 
laws for these branches are 

Here the notation 

m = 2d;/rq3, 

is introduced. By virtue of the inequality 4, << q l ,  one should put aq’ = cq 4: f M ~ &  
in (25) (the y axis is oriented along the vector nl).  

Inserting the explicit expressions for I’ and I, into the definition (24), we get 

m = 4(1 + A)’yl/q3. 
Bearing in mind that q3 x yI and I x 1, we conclude that the quantity m is a 
dimensionless parameter of order unity. For Bqi z Kq: the frequencies wI and o2 are 
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Invited Lecture: Sound absorption in smectics 313 

of the same order of magnitude and do not depend on the closeness to the point of 
transition to the SA phase. 

As follows from (23)’ the parameter m determines the coupling of the orientational 
and undulational modes. Because m x 1 and o1 x 02, this coupling is strong. 
However, for Bq: B Kqt this coupling effectively vanishes and the dispersion law 
o- (4) acquires the form 

o = - iraq2,  (26) 

where now aq2 = a,q: + a2q; + a,qT. Thus the expression for o-(q) can be 
employed for defining the spectrum of the orientation mode for any wavevectors. 

Note that the spectrum of the orientation mode in a hexatic smectic B, where the 
coupling of the orientational and undulation modes is absent, does not coincide with 
(26). The point is that in the derivation of the dispersion law (26) we have used the 
inequality r B q ~ ’ ,  q;’, which in hexatic smectics B is not satisfied. The spectrum 
of the orientational mode in smectics B can be found in [6]. 

6. Smectic layer fluctuations 
Dynamic effects associated with fluctuations of smectic layers can be conveniently 

studied by means of the diagram technique. We shall use the formalism proposed in 

Owing to fluctuations in smectic layers, there appear corrections to the dispersion 
law for the spectrum of slow modes (23) derived in the linear approximation. This 
effect is accounted for by self-interaction of the smectic mode, which is described by 
those terms in the dynamical equations that are non-linear in the displacement vector. 
Fluctuational corrections to the equations of dynamics for weakly fluctuating variables 
appear when the interaction of the modes is incorporated. 

As has been mentioned above, the single strongly fluctuating degree of freedom 
of a smectic is associated with displacements of smectic layers. This means that one 
should take into account only non-linearities in the displacement vector. As the result 
of a rather complicated analysis (analogous to that performed in [5, 61 for smectics 
A and B), we obtain the following expressions for the fluctuational contributions to 
the viscosity coefficients: 

[121. 

AqI = 2(1 + ?)*A, Aq4 = 2y2A, Aq5 = 27(1 + y)A, (27) 

where 

T B3/’ 1 { S,’” dB j:/’ A = --- 1 + -  dcp COS’ 8 (1 + m COS’ 8) C O S ~  (P K3’2 128 

9(I: + I!) + 18(I+I-)P + 44(I+I-)’ 

[1 + 
( I ,  - zp)(9z: - Z2)(31- + I + )  

Here the following notation has been introduced: 

4f cos2 cp 
(1 + mcos28)(1 + fcos2cp)2 

f(cos8) = (1 + mcosZ8)[ml + (m2 - m,)cos26], 

m1,2 = ~ l , Z ~ , l ~ m .  
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374 E. B. Gurovich et al. 

The dimensionless coefficient y is determined by 

The main conclusion concerning the dynamics of smectics follows from these 
expressions: the divergence of the bulk viscosity coefficients due to fluctuations is 
proportional to IoI-'. 

The expression (28) holds for the smectic C phase, where the parameters m, m, and 
m2 determining the function f are of order unity. The respective formula for the SA 
phase is obtained from (28) by putting m = 0. Note that it follows from the explicit 
form of (28) that the coefficient of B3i2/K3'21~I for the Sc phase always exceeds that 
for the SA phase. 

For information, we shall give the spectrum of first and second sound with the 
fluctuational contribution taken into account: 

+ +()I1 + r 2  + t l4  - 2tl5)q;q: + A q t d l .  I 
Here the bare viscosity coefficients (o independent) are involved, and the velocities of 
first, C,, and second, C2, sound are defined by 

By virtue of A cc w-' in the low-frequency limit, the fluctuational damping of the 
sounds exceeds the bare damping, which means that the terms with in (30) can be 
neglected compared with A .  

7. Conclusions 
We have been interested in differences in the attenuation of the sound in 

smectics A and smectics C. In the Sc phase, there is an extra orientational mode 
compared with the S ,  phase. This by itself does not affect the expression for the 
fluctuational attenuation. Therefore in hexatic smectics B, where the orientational 
mode is also present, the expression for the fluctuational attenuation of sound has the 
same form as for smectics A [ti]. However, in smectics C the situation becomes more 
complicated. 

The fluctuational attenuation appears in the region of the existence of the orien- 
tational mode, which is strongly coupled with the undulation mode in smectics C 
owing to their lower symmetry compared with hexatic smectics B. In particular, this 
leads to distortion of the spectrum of this mode for wavevectors with small ql. We 
shall stress that the strong coupling of the orientational and undulation modes takes 
place despite the weak anisotropy of the layers in real smectics C. 

The presence of the strong coupling of the modes does not affect the main 
conclusion that the bulk viscosity coefficients diverge as o-' owing to fluctuations. 
However, it does lead to different coefficients of o-' in the Sc and SA phases. Explicit 
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Invited Lecture: Sound absorption in smectics 375 

expressions for fluctuational corrections to the viscosity coefficients in smectics C are 
given by (27) and (28). The integral appearing in (28) can only be found numerically. 

Note that the fluctuational corrections to the viscosity coefficients qI , q4 and qs 
only are large. For the viscosity coefficient q3 there are only weak logarithmic correc- 
tions, and there are no corrections at all to the viscosity coefficient qz or to the thermal 
conductivity and permeability coefficients. 

In conclusion, let us compare our theoretical picture with experimental data 
obtained by Collin et al. [8, 91 for the smectic A and C phases of the same sub- 
stance. In particular, we note that the modulus B in the Sc phase proves to be smaller 
than that in the SA phase, which agrees with the results of the analysis of the 
critical behaviour of B at the smectic C-smectic A transition (see 54). However, Collin 
et al. paid most attention to the analysis of the fluctuational attenuation of sound. The 
angular dependence of this attenuation led Collin et al. to the conclusion that 
the dimensionless coefficient y in (27) and (30) has not only a different value but 
also a different sign in the S, and Sc phases (as a result of which, the fluctuational 
attenuation of first sound in the S ,  phase becomes zero for a certain propagation 
direction). There is nothing surprising in this. From the definition (29) and the 
law (17) it follows that in mean field theory the quantity y changes abruptly at the 
Sc-SA transition by an amount of the same order of magnitude. In the strong- 
fluctuation region 

y OC IT,,,, - q28-1 . 

We should stress that the coefficients of IT,,,, - have different signs in the 
S, and S, phases, which is in agreement with the experimentally observed behaviour 

Analysing the fluctuational attenuation of sound in the Sc phase, Collian et al. [8] 
concluded that the value of the modulus Kin the Sc phase is smaller than that in the 
SA phase. However, our investigation (see 94) has shown that the corrections to Kin 
the first approximation are absent, and consequently the values of Kin the S, and Sc 
phases should be not noticeably different. This inconsistency is easily removed on 
noting that in [8] Collin et al. analysed the experimental data for the Sc phase using 
an expression for the fluctuational attenuation that is valid only for the SA phase. Our 
expression (28) for the fluctuational contribution to the viscosity coefficients of the Sc 
phase is always larger than that for the SA phase. This accounts for the apparent 
decrease is the modulus K noted by Collin et al. [8]. 

Thus the theory that we have constructed shows that in the long wavelength 
dynamics of all types of smectics, fluctuational effects are associated with the undu- 
lation mode. In addition, in smectics C, owing to their lower (compared with smectics 
A and B) symmetry, an important role is played by the dynamic anisotropy of smectic 
layers, leading to coupling of the orientational and undulation modes. When inter- 
preting experimental data (such as those concerning the sound absorption) together 
with these conclusions, one should also take into consideration the relative narrow- 
ness of the temperature range for the existence of smectic phases, i.e. their closeness 
to the smectic A-smectic C or smectic B-smectic G phase transition points. 

of y. 
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